Copied to
clipboard

G = C62.85D6order 432 = 24·33

33rd non-split extension by C62 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial

Aliases: C62.85D6, C3315(C4⋊C4), (C3×C6).48D12, C3⋊Dic35Dic3, C2.(C335Q8), (C32×C6).9Q8, (C3×C6).18Dic6, C6.21(S3×Dic3), (C32×C6).51D4, C328(C4⋊Dic3), C2.2(C339D4), C33(Dic3⋊Dic3), C6.41(C3⋊D12), C6.11(D6⋊S3), C32(C62.C22), C6.11(C322Q8), C6.22(C6.D6), (C3×C62).15C22, C3210(Dic3⋊C4), C22.4(C324D6), (C2×C6).61S32, (C3×C6).57(C4×S3), (C3×C3⋊Dic3)⋊4C4, (C6×C3⋊Dic3).8C2, (C2×C3⋊Dic3).9S3, C2.5(C339(C2×C4)), (C3×C6).69(C3⋊D4), (C32×C6).48(C2×C4), (C3×C6).44(C2×Dic3), SmallGroup(432,462)

Series: Derived Chief Lower central Upper central

C1C32×C6 — C62.85D6
C1C3C32C33C32×C6C3×C62C6×C3⋊Dic3 — C62.85D6
C33C32×C6 — C62.85D6
C1C22

Generators and relations for C62.85D6
 G = < a,b,c,d | a6=b6=1, c6=d2=a3, ab=ba, cac-1=a-1, ad=da, cbc-1=dbd-1=b-1, dcd-1=b3c5 >

Subgroups: 600 in 162 conjugacy classes, 51 normal (23 characteristic)
C1, C2, C3, C3, C3, C4, C22, C6, C6, C6, C2×C4, C32, C32, C32, Dic3, C12, C2×C6, C2×C6, C2×C6, C4⋊C4, C3×C6, C3×C6, C3×C6, C2×Dic3, C2×C12, C33, C3×Dic3, C3⋊Dic3, C3⋊Dic3, C62, C62, C62, Dic3⋊C4, C4⋊Dic3, C32×C6, C6×Dic3, C2×C3⋊Dic3, C2×C3⋊Dic3, C3×C3⋊Dic3, C3×C3⋊Dic3, C3×C62, Dic3⋊Dic3, C62.C22, C6×C3⋊Dic3, C6×C3⋊Dic3, C62.85D6
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, Q8, Dic3, D6, C4⋊C4, Dic6, C4×S3, D12, C2×Dic3, C3⋊D4, S32, Dic3⋊C4, C4⋊Dic3, S3×Dic3, C6.D6, D6⋊S3, C3⋊D12, C322Q8, C324D6, Dic3⋊Dic3, C62.C22, C339(C2×C4), C339D4, C335Q8, C62.85D6

Smallest permutation representation of C62.85D6
On 48 points
Generators in S48
(1 3 5 7 9 11)(2 12 10 8 6 4)(13 15 17 19 21 23)(14 24 22 20 18 16)(25 27 29 31 33 35)(26 36 34 32 30 28)(37 39 41 43 45 47)(38 48 46 44 42 40)
(1 13 5 17 9 21)(2 22 10 18 6 14)(3 15 7 19 11 23)(4 24 12 20 8 16)(25 43 33 39 29 47)(26 48 30 40 34 44)(27 45 35 41 31 37)(28 38 32 42 36 46)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 44 7 38)(2 35 8 29)(3 42 9 48)(4 33 10 27)(5 40 11 46)(6 31 12 25)(13 34 19 28)(14 41 20 47)(15 32 21 26)(16 39 22 45)(17 30 23 36)(18 37 24 43)

G:=sub<Sym(48)| (1,3,5,7,9,11)(2,12,10,8,6,4)(13,15,17,19,21,23)(14,24,22,20,18,16)(25,27,29,31,33,35)(26,36,34,32,30,28)(37,39,41,43,45,47)(38,48,46,44,42,40), (1,13,5,17,9,21)(2,22,10,18,6,14)(3,15,7,19,11,23)(4,24,12,20,8,16)(25,43,33,39,29,47)(26,48,30,40,34,44)(27,45,35,41,31,37)(28,38,32,42,36,46), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,44,7,38)(2,35,8,29)(3,42,9,48)(4,33,10,27)(5,40,11,46)(6,31,12,25)(13,34,19,28)(14,41,20,47)(15,32,21,26)(16,39,22,45)(17,30,23,36)(18,37,24,43)>;

G:=Group( (1,3,5,7,9,11)(2,12,10,8,6,4)(13,15,17,19,21,23)(14,24,22,20,18,16)(25,27,29,31,33,35)(26,36,34,32,30,28)(37,39,41,43,45,47)(38,48,46,44,42,40), (1,13,5,17,9,21)(2,22,10,18,6,14)(3,15,7,19,11,23)(4,24,12,20,8,16)(25,43,33,39,29,47)(26,48,30,40,34,44)(27,45,35,41,31,37)(28,38,32,42,36,46), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,44,7,38)(2,35,8,29)(3,42,9,48)(4,33,10,27)(5,40,11,46)(6,31,12,25)(13,34,19,28)(14,41,20,47)(15,32,21,26)(16,39,22,45)(17,30,23,36)(18,37,24,43) );

G=PermutationGroup([[(1,3,5,7,9,11),(2,12,10,8,6,4),(13,15,17,19,21,23),(14,24,22,20,18,16),(25,27,29,31,33,35),(26,36,34,32,30,28),(37,39,41,43,45,47),(38,48,46,44,42,40)], [(1,13,5,17,9,21),(2,22,10,18,6,14),(3,15,7,19,11,23),(4,24,12,20,8,16),(25,43,33,39,29,47),(26,48,30,40,34,44),(27,45,35,41,31,37),(28,38,32,42,36,46)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,44,7,38),(2,35,8,29),(3,42,9,48),(4,33,10,27),(5,40,11,46),(6,31,12,25),(13,34,19,28),(14,41,20,47),(15,32,21,26),(16,39,22,45),(17,30,23,36),(18,37,24,43)]])

54 conjugacy classes

class 1 2A2B2C3A3B3C3D···3H4A···4F6A···6I6J···6X12A···12L
order12223333···34···46···66···612···12
size11112224···418···182···24···418···18

54 irreducible representations

dim1112222222224444444444
type++++--+-++-+-+-
imageC1C2C4S3D4Q8Dic3D6Dic6C4×S3D12C3⋊D4S32S3×Dic3C6.D6D6⋊S3C3⋊D12C322Q8C324D6C339(C2×C4)C339D4C335Q8
kernelC62.85D6C6×C3⋊Dic3C3×C3⋊Dic3C2×C3⋊Dic3C32×C6C32×C6C3⋊Dic3C62C3×C6C3×C6C3×C6C3×C6C2×C6C6C6C6C6C6C22C2C2C2
# reps1343112364243211232222

Matrix representation of C62.85D6 in GL6(𝔽13)

1200000
0120000
0012100
0012000
0000120
0000012
,
1210000
1200000
001000
000100
0000120
0000012
,
050000
500000
0001200
0012000
000033
0000106
,
080000
800000
0012000
0001200
000029
00001111

G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,12,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[12,12,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[0,5,0,0,0,0,5,0,0,0,0,0,0,0,0,12,0,0,0,0,12,0,0,0,0,0,0,0,3,10,0,0,0,0,3,6],[0,8,0,0,0,0,8,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,2,11,0,0,0,0,9,11] >;

C62.85D6 in GAP, Magma, Sage, TeX

C_6^2._{85}D_6
% in TeX

G:=Group("C6^2.85D6");
// GroupNames label

G:=SmallGroup(432,462);
// by ID

G=gap.SmallGroup(432,462);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,56,141,36,1124,571,2028,14118]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^6=1,c^6=d^2=a^3,a*b=b*a,c*a*c^-1=a^-1,a*d=d*a,c*b*c^-1=d*b*d^-1=b^-1,d*c*d^-1=b^3*c^5>;
// generators/relations

׿
×
𝔽